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ANALYSIS MAXIMUM AND MINIMUM PRINCIPLES
ON HARMONIC FUNCTIONS

WITH KILLED BROWNIAN MOTION
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Abstract.

The intention of paper uniform lower and upper bounds for positive finite element
approximations to semi linear elliptic equations in several space dimensions subject to mixed
Dirichet — Neumann boundary conditions are derived . The discrete maximum principle also
holds for degenerate diffusion coefficients. The proofs are based on local maxima lecture
truncation technique and on a variation formulation . Both methods are settled on careful

estimates on truncation.
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I. INTOUDUTION

The function satisfies a partial differential equation of elliptic type ( with on undifferentiated
term ) then the maximum of the function must occur on the boundary of the region. This note
concerns applications of this maximum principle . The first topic treated concerns the ratio of
functions which satisfy principle . In results that the ratio obeys the same maximum principle . In
particular the maximum principle applies to the ratio of harmonic functions. The last mentioned
result is used to obtain maximum principles involving inharmonic functions, on the maximum
principle states that a non-constant harmonic function cannot attain a maximum (or minimum)
at an interior point of domain € are bounded by its maximum and minimum values on the
boundary .Such that maximum principle estimates have many users, but they are typically a
valuable only for scalar equations not systems of PDE . For example the maximum and

minimum values , a point on the graph of a function f(x)is a local maximum if, in its
immediate neighbourhood , the function generates lower values to either side of the maximum
than the value that it generates at the maximum point itself , as shown in fig (1) . A point on the
graph of a function f(X)is a local minimum if in its immediate neighbourhood, the function
generates higher values to either side of the the minimum that the value that it generates at the
minimum itself as shown in fig (2) . It is possible for a function to have more than one maximum
or minimum point as shown fig (3) . The points where a graph takes its maximum or minimum
values may also be referred to as turning points. In gradient a tangent drawn at a turning point
will be parallel to the horizontal Xaxis and the gradient at such a point will therefore be zero.
This is illustrated in fig (4) . Since gradient can be determined by differentiation , it follows that
at either a maximum or minimum point on the graph of Y = f(X), the gradient function dy/dx

will be equal to zero. On the graph of y = f(X) ata maximum or minimum point €ly/dx_=0
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fig.(1): a local maximum fig.(2):a local minimum fig.(3): tow max. and one min. fig.(4):tangent at

max. and min.
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It is well-known that solutions of linear and non-linear PDE as well as ( minimum , maximum)
of variation integrals often satisfy the strong maximum principle a bounded non-constant
continuous solution u can not attain its maximum or minimum in Supgu<Cinfgu , for all
small balls B < Q. In fact inequality implies the set 4§ =0 is open and the continuity of U
guarantees that the set 4§ >0 is open .if we are only interested on the minimum principle, it is

enough to consider super-solutions or quasisu-perminimizers and similar reasoning since non-
negative lower semi-continues representies satisfy the harnack inequality. The boundednces and
symmetry of solution, the bounds for the first eigen-value for quantities of physical interst (
maximum strees, the tensional stiffness , electrostatic capacity charge density etc. ) , the
necessary conditions of solvability for some boundary value problems , etc, the one dimensional
maximum principle represents a generalization of the following simple result , let the smooth
function U satisfy the inequality u” >0in Q = &, . Then the maximum of uin Q occurs on

oQ = 4, 4 on the boundary of Qie max,u=max, H(x),u(8) . Andthe n-dimensional

case we treat the n-dimensional variants of results presented in some possible extensions for
nonlinear equations and for equations of higher order as well as their applications , we consider

the linear operator ( summation convention is assumed , i.e summation from 1 to n is understood
on repeated indices as that Lu=a"!(x)u; ; +b'(x)u; +c(x)u , a"}(x) =a’'(x). The maximum

principle for sub-harmonic functions goes to for operators more general than the Laplace

operator was proved in two dimensions , the generalized maximum principle
ueC’Q ncC’ ﬁ:satisfy the inequality Lu=Au-+c(x)u=0where c>0in Q.The maximum
principles that we have presented above are valid only for the class C? @ ~C° ﬁ the results

are valid for classical solutions , we may consider operators L of the divergence form Q e R".

I.MAXIMUM AND MIMINMUM PRINCIPLES ON HARMOIC
FUNCTION

2.1 Maximum and minimum principles

The function satisfies a partial differential equation of elliptic type ( with on undifferentiated

term ) then the maximum of the function must occur on the boundary of the region. This note
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concerns applications of this maximum principle . The first topic treated concerns the ratio of

functions which satisfy principle
Theorem 2.1.1

Supposes that Q is a connected open set and if U eC? € if U continuous . a subset F is

relatively closed in Q, F=F ~Q where Fis closed inrn, ifaxe F and g, & = Q, then

the mean value in equality for sub harmonic function implies that

1 f U dy= U dy-U €& >0
(1) N (gv, “dy N C(/, y -

Since X attains its maximum at X ,we haveU (y) =U(x) <0 , for all yeQand it follows that
U@ =U ¢ ing, &« _. Therefore F is open as well as closed . Since Q s not connected,
thenU is constant in any connected component of < that contains an interior , andF is
nonempty we must have F = Q soU is constant in Q . If © is not connected , thenU s
constant in any connected component of © that contains an interior point where U attains a
maximum value .

Example 2.1.2

The function U & > |x|2 sub harmonic in R" at attains a global minimum in R" at origin but it

does not attain global maximum in any open set Q < R" it does of course attain a maximum on
any bounded closed setQ & but the attainment of maximum at a boundary point instead of an
interior point does not imply the sub harmonic function in constant it follows immediately that
sub harmonic function satisfy a minimum principle and harmonic function a maximum and
minimum principle .

Theorem?2.1.3 Harmonic Function is Maximum and Minimum

Suppose thatQ is a connected open set andu e c?(2), if U harmonic and attains a global
minimum or maximum inQ .thenU is constant

Proof:

Any super harmonic function U that attains minimum< is constant since, —u IS sup

harmonic and attains a maximum a harmonic function is both sub harmonic .
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Example 2.1.4 Harmonic Function
The function U &,y > x? — y?is harmonic in R" it’s the real part of the analytic function
f (z) = z?it has critical point at 0 meaning that D, =0 ,this critical point is a saddle —point

however not an extreme value not also that.

(2) i dedy=i T (cos?p—sin24)dg =0
Br (0) 27 0

as required by mean value property , one consequence of this property is that any non constant

harmonic function is an open mapping meaning , that it maps opens set to open set this not true
of smooth function such as x — |x|2 that. extreme value

Theorem 2.1.5 Bounded Harmonic Function
Suppose that « is a bounded, connected open set in R" and U e C2 € 2~C € is harmonic in
Q then.
max ,U =max,;,U and min oU =min ;,U
Proof :

Since U is continuous and Q is compact , U attain its global maximum and minimum on @, if
U attains a maximum or minimum value at interior point then U is constant by otherwise both
extreme values are attained in the boundary .In either cases the result follows let given a
second of this theorem that does not depend on the mean value property .Instated we us
argument based on the non-positivity of the second derivative at an interior maximum . In the

proof we need to account for the possibility of degenerate maxima where the second derivative
in zero . For >0, letU “€ >U € J¢|x|*. ThenAU® =2n  £>0,since U is harmonic .if

U “attained a local maximum at an interior point then AU® <0by the second derivative test .
thus U® no interior maximum, and it attains its maximum on the boundary .If,

X <R, for all xeQ, if follows that.

(3) SupU < Sup U* < Sup, U <Sup,,U +¢ R?
letting £ — 0" ,we get thatSup,U < Sup,,U .An application for the same a grummet to u
given in, inf,U <inf,,U .and the result follows . Sub harmonic function satisfy a maximum

principle mingU =min,, U ,while sub harmonic function satisfy a minimum principle
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ming U <U <min,, U for all xeQ. Physical terms, this means for example that the interior of

abounded region which contains no heat sources on heat sources or sinks cannot be hotter that
the maximum temperature on the boundary or colder than the minimum temperature on the
boundary .The maximum principle given a uniqueness result for ( Dirichlet problem)
for the poison equation .

Theorem 2.1.6 Dirichlet Problem Function
Suppose that © is a bounded connected open set in R" and f cCq g« €Q are given
function then is at most one solution of the Dirichlet problem with U e C2Q hC € .

Proof :
Suppose that U,,U, eC2Q ~CQ satisfy equation—AU =f inQ,U=gondoQ, Let

V =U,then, V eC? Qjmcﬁ: is harmonic @ and, V =0 on oQ ,the maximum principle
implies that v =0in Q@ so U; =U, and solution is unique .

2.2 The Maximum Principle and Uniqueness
Are our solution formulas the only solution of the heat equation with the specified initial and or

boundary condition by linearity. This amounts to asking whether U =0is the only date 0 the
answer is yes . We shall prove this using the ( maximum principle) .The maximum principle this
is an elementary for - reaching fact about solutions of linear parabolic equation. Here is the

simplest version . Let D be the bounded domain suppose f, —A f <0 ,VxeD and o<t<T

Then the maximum of f in the maximum closed cylinder D x |, T is a chive either at the ( initial
boundary) t =0 at the ( spatial boundary) x e ox. Notice the asymmetry between the initial
boundary t=0, ( where f can easily easily a chive its maximum ) and the finial boundary t=T
(where f does not achieve its maximum except in trivial case when f is constant ) . This

asymmetry reflects once again time has ( preferredn when solving a parabolic P. D .E )

2.3 Function Space Elliptic Operators and Maximal Principle

We start with some results on solve space .Let x = (1 Xg yeveeees , X, :T and Y=, Y, ¥y, :T be

two points in the n — dimensional Euclidean space R" we set x.y= ¥ x..y and |x |: JE&xX
i=1 j

an n-tupelo of nonnegative integers « = €,a5......«, _is called Elliptic operators — and we define.
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|o:|:§05i : x’)’:(xal,xaz, ....... ,x“n) x =€ X ,xn‘
i=1 -
D=2 , D=0, D,...D, , D =D& D“”——a‘a‘
k an 1 1 PARLLRE n_» 1 yronenas ’ n avxfll’ ..... ’axr?
letQ be fixed bounded domain (i.e.) open. And connected subset of R" with smooth boundary
0 Q. For a nonnegative integer, m .We denote by C™Q , repC m(i:the set of all m—times

continuously differentiable real-value or complex valued function in Q (resp. & )and by C' (2:

,the subspace of Cm(l:consisting of those function which have compact support in Q for

1/p
D“U‘pde Also for p=2 and

Q |a] <m

UeC"Q and 1<p<o we define |u ||m’p:(f s

uvVvecCc" (2: we can define .

~ B!
(4) OV =z DU dx 3

Qaj<m

Let Cg‘ Q_ be the subset of Cm(l:consisting of those function U for which |U ||m ) S
define W™" @ _and W™ €_to be the completions in the norm | . | of CJ' and Cj' Q.

respectively . It well known that W™P, W ™P are Bench space and W;"P @ W ™P @ we will
also let H"Q =W™*Q >, HIQ >=W"*Q The space H" Q and H) Q are Hilbert
space with the scalar product €,- _given by space W™ € "consist of function U < LP Q_,whose
derivatives D* U  in the sense of distribution of order || <mare in L” Q .The space W™" Q_
in the subspace of elements of W™P € which vanish in some generalized sense on 4 ,it can
be shown that if U € Cm‘lﬁ:mwom’p Q:.Then U and the first m—1normal derivatives vanish

on 0Qthen UeW™P Q:following result describing various relation a the above spaces, are

well known and will be used throughout the remainder of this section.
Theorem 2.3.1

The following relation amongW™P € )C™ Q Jand L Q hold .
@ W™ Q =W Q and 1<r<p
(b) the impending in continuous. (b) W™ Q=W P QJf 1<r, p<e and, m are integers such

that 0< j <m and 1 21 2i— and the imbedding is compacts .(c)
n

p r

5|3

np
W™P Q = L™ € if mp < nthere exist consist constant C, such that

~
-
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JU e <CuU|, for Uew™ Q. (d)W™" G - Qi Osksm—(%j and there
n-mp

: : ~ 1 -
exists consist C, such thatsup ﬁ)“ &« Jo<k,xeQ ‘ 3GC,[U],, foruew™ @_.
(f) (Poincare inequality) there exists constant C = C €2 such that ininfyg|U +K|<CQVU], , for
all UeH!? (2: (Not that this inequality holds even if Q in Lipchitz only) . For any

oc=K+7>0 where k is a nonnegative integer and 7€ Q,ljckﬁ: and such that the

derivatives of D“U of order|a|:k .Satisfy a uniform Holder condition with 7 ,The norm this

space is defined as U] « @ Uk 6:+az=k‘ DU L

| \Y |,7 =SUpy, €L, X#V % , Consider now the following linear parabolic equation
X—y

()

§U=A(<,Dju t>0 xeQ B ¢D V=0 t>0 xedQ

for all some @ € ©,1 and A .1 is strongly elliptic ( i.e) there exists a constant « > 0o that
Eai i(X)zz;=d ¥ 2% (,,...,2,)" € R", the boundary condition in either of ( Dirichlet type )
ij i—1

(i.e.) B & D U =U & or (Neumann type) (i.e.)

oU
B¢DD -7€3163 § [£a, €5 J2S
le k=1 aXJ
2.4 Maximum Principle for Strong Solutions
In This sub section we treat the extension of the classical maximum principle in to strong

~
—

solution in particular to solutions in space W,é’g Q: Recall that an operator L of the form elliptic

in domain Qif the coefficient matrix A= lai'j _Is positive every where in Q .For such

operators we will let D denote the determinate of a and set D =D(£j so that D* is geometric
n

mean of the eigenvalues of A and 0< 1 <D" <A where as A, A dent respectively the minimum

and maximum eigenvalues of A . our condition on the coefficient of L and in homogeneous term
f in the equation will now take the from .

(6) |b|/D" , f/D"el"Q_ C<0 in Q
The following weak maximum principleat A,D.
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Theorem 2.4.1
LetLU>f is abounded domain @ and U €C Oﬁ}\ W I2(,)nc Q: , Then

Sup, U < Sup U™ +ch /D"

o that functions W,5¢ € are at least continuous in Q ifu
is not also assumed continuous on (5, in hypotheses can be modified by replacing .
(7 Sup, U™ by limSup ;U *

Proof:
Contact set and normal mapping. If U is an arbitrary continuous function on ¢ we define the

upper constant set U denoted I'" orI{jto be the subset of Q_ where graph of U lies below a
support hyper plane in R'that is T*= 4eQ U XU @ ¥ p €-y_| | forall xeQ.
For some p=p(y)eR" clearly Uis a concave function in ¢  if and only if " =qQwhen
U ect@_ we must have p=Du ¢ any support hyper plane must then be tangent hyper plane to
the graph of U further more when U eC?Q_ the Hessian matrix DU = [I)ij U iS non positive
on I'" in general the set ' is closed relative to € for an arbitrary function .we define the
normal mapping X € = X, € .Of point yeQ to the set of (slopes) of support hyper planes of y
lying above the graph of U thatis X ¢ = e R" JU€EXUQ 3 p&-y ) }for all xeQ
clearly X & in nonempty if and only ifyel’* furthermore when U ecl(zj then

X (/}_ DU (/: on I'"thatis X is the gradient vector field of U on I'" as a useful example of
a non differentiable function U let us take 8=, € to be a ball and U to be @ the function
when graph is a cone base Q and vector (z,a: for some positive

aeR U(}a{l—%}.

Lemma 2.4.2

(n_
For Uec?Q c®Q_ we have Sup, U < Sup,oU +il( ] detDZU‘] where d =dimQ
r+

nn

lemma 2.4.3

For U eC?Q 1 C° € we have Sup, U < Sup,q, + @
n
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lemma 2.4.4 Nonnegative Integerable Function onR"

Let g be nonnegative locally integerable function on R" then for anyU e C? Q:mCO ﬁ: we
2 —a;; b;;U "
have I_g< 1 g(DU) ‘detD U‘s i 9(DU)| ———=— Where
BM Tt r nD
M = €up,U —Sup,U 2d , d =dam Q
lemma 2.4.5
Let g be nonnegative, locally integerable function on R" then for anyU e C? Q:m c? ﬁ: we
have | g<]gOUJdetDU| , X, Q=X, Q.
Q. rt
Theorem 2.4.6 Elliptic is Uanqunecs
Let L be the elliptic in bounded domain @ and satisfy |b|/D", f/D" L"Q_ suppose that U

and Vv are a function inW,ég Q:m c’Q : satisfying

L, =L, inQ U =V ondQthenU =VinQ
Definition 2.4.7 L°Estimates Preliminary Analysis

The basic L estimates of this is via interpolation .In this we develop some preliminary analysis
A cube decomposition procedure also necessary for Holder estimates the Marci kinesics

interpolation theorem that is applied in next L.
Lemma 2.4.8

Let K, be a cube in L ,f nonnegative integral function defined in K, and t,a: positive

number satisfying | f $t|K0| by bisection of the edges of K, we subdivide intoZ" , congruent
Ko

sub cubes K with disport interiors .Those sub cubes K which satisfy | f $t|K| are similarly
Ko
subdivided and the process repeated indefinitely .Let ¢ denote the set of sub cube K thus

obtained that | f <t|K| and for eachK € ¢ denote by K the subcube whose subdivision given
Ko

K, ‘K‘/|K| = 2"we have for any K e furthermore setting F = UK and G =K, —-F we have
Kegp

f <t in G .For the point wise estimate also need to consider the set F = U K satisfies | f S‘IE‘
Kegp F

in particular of f in the characteristic function X- of measurable subset I" of K|,

(8) |F|:‘Fm|5‘ st‘ﬁ‘
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2.5 Pontryagin’s Maximum Principle and Minima Problem
The main purpose of this section is to derive a counterpart of the Pontryagin maximum principle

valid for certain maximum problems .Our problems is to minimize the function
9) H & =Sup,F (t, x%)

Under given boundary condition. The a admissible function are absolutely continuous vector
functions, such problems have been treated by D .S and the author .

dx
‘A(:(EJr B(E+C(j

Where A(:and B(:are matrix function and C (:is vector function the author has treated the
case x a scalar for fairly general nonlinear function F .
2.6 Statement of The Problem and Theorem

(10) F =

Let us state the problem in detail by D .We denote a region in R™ and points in D are written
¢, x_where has € _component by €;, X, _and &, X we denote two points in D with

€, < X, the class F of dismissible section x = x€ with graph in D ,defined forT, <t<T,
absolutely continuous there and satisfying x €, = x,,x& =X _for x (= F we define the

functional H € by .

> dt
And it will be proved in a lemma that Sup._z F €, >Sup.z FC. for any x{ cFa

(11) H& = (SupteE F (t,x(dx‘/ j

longhouse function F which we are interested (i,e) satisfying condition . Further, we writ
M, =inf,_- H € and it will be seen below that M, > —cowe impose that following conditions

FOxz .
(@) FCxz £C'Ox R”:.
(b) For any fixed (,X:e Dthe function u Q:E F(,X,Z:is strictly convex in z , Further there

exists a mapping W = D — R"such that F ¢ x,w€x = min _, F{x,z forall (x}D. Also
E

weC Q.

IH.LHARMONIC FUNCTIONS OF KILLED BROWNIAN MOTION
Suppose that X, and T; are two independent processes, where X, is Brownian motion in R%and

T;is an «/2stable subordinator starting at zero 0 <« < 2.1t is well known that Y “(t) =Xy, is a

rotationally invariant « stable process whose generator is — € AE’ 2 the fractional power of the
negative Laplacian . The potential theory corresponding to the process Y,, is the Riesz potential
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theory of order « . Suppose that D the killed process Y,° (:has been extensively studied in

recent years and deep properties have been obtained. Let A|D be the Dirichlet Laplacian in D .

The fractional power — (—AD:“’Z of the negative Dirichlet Laplacian is a very useful object in

analysis and partial differential equations.

3.1 Notation and setting

Let X,be the Brownian motion in RY, which runs twice as fast as the standard d-dimensional
Brownian motion and let T, be an «/2 stable subordinator stating at zero 0 <« <2we assume
that X and T are independent we are going to use P,and E,to stand for the probability and

expectation to the Brownian motion , €, to stand for the Brownian of u,“’?(S) to denote the
density of T,, let D — RY be a bounded domain , and let X." be the Brownian motion killed upon
exiting D we define now the subordinate killed motion Z° by subordinating XiDvia the «/2
stable . More precisely , let Z°(t)=X°(T,) , t>0then ZP(t) is a symmetric Hunt process on

D if we use e;o and GPto denote the semi group and potential operator of X P respectively
then the semi group.

(12) Q' (9 =1p f (Ui *(s)ds

3.2 Maxima and Minima Lecture

Example 3.2.1

A Texas based company called ( Hamilton,s wares ) sells baseball bats at a fixed price c. A field

researcher has calculated that the profit the company makes selling the bats at the price cis
15 51

p(c) = Téoc“ +§C —7c2 +1150c at what price should the company sell their bats to make the

most money?
Intuitively what would we have to do solve this problem ? We wish to know at what point c jg

this function P(C) is maximized . we do not have many tools as moment to solve this problem so
let,s try to graph the function and guess at where the value should be.

3.3 Absolute global maxima

Definition 3.3.1

Let f be function defined on an interval | containing ©.We say that f has an absolute
maximum ( or a global maximum ) value on 1 at Cat f(x)< f(c)for all xcontained in 1.
Similarly , we say that f has an absolute minimum ( or a global minimum ) value on 1 at cif
f(x)> f(c)for all xcontained in I. Those points together are known as absolute global
extreme.

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., [Js=NNECEETEMNIE! as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us



March IV Volume 5, Issue 1 ISSN: 2320-0294

2016 =

Example 3.3.2
f(x) =x? +1for xe € oo,00 remember this notation means for x living in the interval from

negative infinity to infinity . This can also be written as x € Ror in words as for all real x ,this
function has an absolute minimum of 1 at the point x=0but no absolute maximum on the
interval .

Example 3.3.3

f(x)=x?+1for x e € 2,2 remember closed brackets means we include the endpoints in our
interval this function has an absolute minimum of | at the point x =0and a absolute maximum
of f(+2)=(+2)? +1=5at the pointsx=2 and x=-2.

Example 3.3.4

f (x) = x* +1for x e ©,2 remember open brackets means we omit the endpoint in our interval .

Example 3.3.5
f (x) = x*for x € € 0,00 , this function has no absolute minimum and no absolute maximum .
3.4 Extreme value theorem

A function have an a absolute maximum and minimum , these examples seen to suggest that if
we have a closed interval then we’re in business.

Example 3.4.1
Consider the function .fro the graph, its clear that this function has no absolute minimum or
absolute maximum but f (x) is defined on all of |p,2 the problem with this example is that the

function is not continuous .

X if <x<
f(x)=41.5 if x=012
—x+4 if 1<x<2

(13)

Theorem 3.4.2 Extreme value

Let f(x)be a continuous function defined on a close interval , then f(x)has an absolute
maximum and an absolute minimum on that interval .

[Notice]: that this says nothing about uniqueness. Remember the example f(x)=x*+1for
x € 2,2 has two points where the absolute maximum was obtained . Also note that functions
that are not continuous and defined on a closed interval can still have extreme.

Example 3.4.3

Consider the following function on 1,1 as function f(x), this function is not continuous at 0
however it has a global minimum of 0 of -3 because at all non-zero points this function is

sturdily positive.
X if x#0
f(x)=
(%) {_ 5 _

(14) if x=0
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Definition 3.4.4

Let I be an open interval on which a function f is defined and suppose that c e | .We say that ¢
is a local maximum value of fif f(x)< f(c)for all xcontained in some open interval of I
.Similarly we say that c is a local minimum value of f if f(x)> f(c)forall x contained in some
open interval | . These points together are known as local extreme.

[Note] : Your textbook uses any arbitrary interval, but requires c to be an interior point.

[Note] : Global extreme of a function that occur on an open interval contained in our domain are
also local extreme.

Theorem 3.4.5 Fermat’s or local extreme point theorem

If a function f(x)has a local minimum or maximum at the point cand f’(c)exists, then
f'(c)=0

Example 3.4.6

We look at f(x)=[x|. Notice that this function is not differentiable x=0but since
f(x)=|x/>0= f(0)we see that it has a local minimum at 0 ( and in fact this is a global
minimum ).

Definition 3.4.7

A critical point is a point c in the domain of f where f’(c)=0or f’(c)fails to exist . In fact all
critical points are candidates for extreme but it is not true that all critical points are extreme.
Example 3.4.8

Consider the function f (x) = x*.We saw before that this function has no maximum or minimum
. However f'(x)=3x%and f(0)=3(0)? =0so the point x=0is a critical point of f that is not
an extreme.

3.5 Algorithm for finding global minima and maxima

Let f be a continuous function on a closed interval |,b ( so that our algorithm satisfies the
conditions the conditions of the extreme value theorem :

(a) Find all the critical points of €,b , that is the points x € € b where f’(x)is not defined or
where f'(x) =0( usually done by setting the numerator and denominator to zero ) call these
POINtS X;, Xy ,eeey X, -

(b) Evaluate f(x),....., f(x,), f(a), f (b)that is evaluate the function at all the critical points

found from the previous step and the two end point values.

(c) The largest and the smallest values found in the previous step are the global minimum and
global maximum values.

Example 3.5.1

Compute the absolute maximum and minimum of 3x—4x+2 on |12 .

Solution
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Our function is continuous ( and in fact differentiable ) everywhere . Hence we f'(x) =6x—4
setting f'(x) =0and solving yields 0= f'(x) =6x—4= 4 =6x=2/3=x. Now we evaluate f
at x =2/3,—1and 2 ( that is the critical points and the end points ) we get that .

(15)

2 2\ (2 2 ) )

f (5) = 3(§j - 4(5) + 4:§ (D=3 -4(-)+2=9,f(2)=3(2) " -4(2)+2=0

From thjs , we see that the ab§olute maximum is 9 obtained at x = —1ans the absolute minimum
is €/3 obtained at x = €/3 .

Example 3.5.2

Compute the critical points of f (x) =5x?2

Solution
-1
We compute the derivative f'(x) = %x 3 ,Now we check when the derivative is 0 and when it is

undefined This function is never 0 but happens to be undefined at O which is a point in our in

domain . Hence the critical points are just x=0.

Example 3.5.3

Let finish off with our first example .We compute the global maximum on },200 of
1s 51,

P(c) — G e O
2000 5
3.2

we can apply the algorithm. Taking the derivative yields P’(c):5_—010c3+§c —51c? +1150

setting this to zero then solving ( using a computer ) Vyields
¢ =3508903837,94.40553426169.704082CEvaluating the function at these points and the end
points 0 and 200 yields p(0) =0. From this we can see that the maximum occurs ¢ =169.70and

given a proof of 23545.89 dollars.

+1150c the function is continuous and differentiable everywhere so

p(0) =0
p(35.8903837) =1684348591

(16) p(94.40553426) = 9860.6282
p(169.7040820) = 23545.8859
p(200) =1000

I. CONCLUSION

(a) The x is a connected open set and if u e c2 ¢ if U continuous . a subset F is relatively closed in o ,
F=FnQ where Fisclosed inR",ifaxeF and g &« =, then the mean value in equality for sub harmonic

function implies that conclusion [ ¢ ~U & dy= [U € dy-U & >0.

br € D
(b) The ¢ isabounded, connected open setin rR" and u ECZQ:ﬁCﬁ:iS harmonic in & then.
max oU =maxsoU and min oU =min 5o U

r <_
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(c) ()_: in hypotheses can be modified by replacing Supg U ¥ by  limSupaoU *

(d) The f onan interval 1 containing c we say that f has an absolute maximum ( or a global maximum )
f(x)< f(c) . Similarly f has an absolute minimum f(x)> f(c) for all x contained in 1.

APPENDIX

Appendixes, if needed, appear before the acknowledgment.
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